Academic Council Meeting No. and Date:8 / September 04, 2023Agenda Number :2Resolution Number : 34, 35 / 2.3, 2.24

Vidya Prasarak Mandal's

B. N. Bandodkar College of Science (Autonomous), Thane

Syllabus for

Programme : Bachelor of Science

Specific Programme : Mathematics

[Major/Minor]

[F.Y.B.Sc. Mathematics]

Level 4.5

CHOICE BASED GRADING SYSTEM

Revised under NEP

From academic year 2023 - 2024

This page is intentionally left blank

Eligibility:

Passed 12^{th} standard (HSC) of Maharashtra State Board / CBSE / ICSE board with Mathematics as one of the subject.

Duration : 3 years (level 4.5) (includes SEM I and SEM II)

Mode of Conduct:

Laboratory practicals / Offline lectures / Online lectures

Laboratory Practicals / Offline lectures / Online lectures

Total Credits for the Program: 44 Starting year of implementation: 2023-24

Name of the Degree Program: B.Sc

Discipline/Subject: Mathematics

Specific Programme:

F.Y.B.Sc. (Mathematics) (Major/Minor) Credits: 06

F.Y.B.Sc (Mathematics) (Skill Development) Credits: 02

F.Y.B.Sc (Mathematics) (Generic) Credits: 02

F.Y.B.Sc Mathematics (Major/ Minor)

Preamble

Department of mathematics of VPM'S B. N. Bandodkar College of Science Autonomous has designed the syllabus of F.Y.B.Sc. Mathematics for the academic year 2023-24 under NEP 2020.

Mathematics is the most fundamental subject and an essential tool in the field of Science and Technology. The syllabus has been developed to prepare the students in pursuing research in Mathematics as well as to enhance their analytical skills and knowledge of mathematical tools and techniques required in industry for employment.

In recent decades, the extent of application of Mathematics to real world problems has increased by leaps and bounds. Taking into consideration the rapid changes in science and technology and new approaches in different areas of mathematics and related subjects like Physics, Statistics and Computer Sciences, the board of studies in Mathematics has prepared the syllabus of F.Y.B.Sc. Mathematics. The present syllabi of F. Y. B. Sc. for Semester I and Semester II has been designed as per U. G. C. Model curriculum so that the students learn Mathematics needed for these branches, learn basic concepts of Mathematics and are exposed to rigorous methods gently and slowly. The syllabi would consist of two semesters and each semester would comprise of two courses for F. Y. B. Sc. Mathematics. Course I is 'Calculus I and Calculus II'. Calculus is applied and needed in every conceivable branch of science. Course II, 'Discrete Mathematics and Combinatorics' develops mathematical reasoning and logical thinking and has applications in science and technology.

Course Outcome

- Give the students a sufficient knowledge of fundamental principles, methods and a clear perception of innumerous power of mathematical ideas and tools and know how to use them by modeling, solving and interpreting.
- Reflecting the broad nature of the subject and developing mathematical tools for continuing further study in various fields of science.
- Enhancing students' overall development and to equip them with mathematical modeling abilities, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
- ✤ A student should get adequate exposure to global and local concerns that explore them many aspects of Mathematical Sciences

Program Specific Outcomes

- To understand the basic concepts and fundamental theories of Mathematics
- To develop problem solving and computing skills
- To use mathematical concepts learnt for deducing proofs with logical reasoning
- To develop analytical skills and understanding of abstract theories of Mathematics
- To learn various mathematical tools and techniques and apply them in real world

BOS Chairman: Mrs. Minal Wankhede

VPM's B.N.Bandodkar College of Science (Autonomous), Thane

F.Y.B.Sc. (Mathematics)

Structure of Programme

	Semester 1: Major		
Course Code	Course Title	No. of lectures In hrs	Credits
23BUMT1T1	Major 1	30	2
23BUMT1T2	Major 2	30	2
23BUMT1P1	Mathematics Practicals	60	2
23BU1 SEC7	SEC	45	2
	Total	165	8
	Semester 1: Minor		
Course Code	Course Title	No. of lectures In hrs	Credits
23BUMT1T3	Minor 1	30	2
23BUMT1T4	Minor 2	30	2
23BUMT1P2	Mathematics Practicals	60	2
	Total	120	6
	Semester 1: Generic	<u> </u>	
23BUMT1T5	Mathematics -I (Generic-1)	30	2
	Total	30	2
	Optional Electives Semester 1 -Interdisciplinary S	Sciences	
23BUID1T6	Soft skills and personality development-I	30	2
	Total	30	2
	Course Title Semester 1 - (AEC)		
23BUEN1T8	Basic English Learning course	30	2
	Total	30	2
	Semester 1 - Indian Knowledge System	<u> </u>	
23BUIK1T9	The Ancient Indian Social StructureI	30	2
	Total	2	

	Semester 2: Major		
Course Code	Course Title	No. of lectures In hrs	Credits
23BUMT2T1	Calculus II - Major 1	30	2
23BUMT2T2	Combinatorics- Major 2	30	2
23BUMT2P1	Mathematics Practicals based on Paper I and Paper II	60	2
23BU2SEC7	SEC -Application of Derivative and Permutation	45	2
	165	8	
	Semester 2: Minor		
Course Code	Course Title	No. of lectures In hrs	Credits
23BUMT2T3	Minor 1	30	2
23BUMT2T4	Minor 2	30	2
23BUMT2P2	Mathematics Practicals	60	2
	120	6	
23BUMT2T5	Applied Mathematics -I (Generic-2)	30	2
	Total	30	2
	Optional electives Semester 2-Interdisciplinary se	ciences	
23BUID2T6	Soft skills and personality development-II	30	2
	Total	30	2
	Course Title Semester 2 (AEC)		
23BUEN2T8	Scientific English writing	30	2
	30	2	
	Semester 2- Indian Knowledge System		
23BUIK2T9	The Ancient Indian Social StructureII	30	2
	Total	30	2

Note: AEC, IKS, Open elective syllabus view separately.

Semester I

Paper 23BUMT	Durse Code Paper ICourse TitleCreditsBUMT1T1/ BUMT1T3Semester I Calculus I2		le	No. of ectures 30			
 Course Outcomes: Upon completion of this course, students will learn about Mathematical aspects of Real Number system Sequences of real numbers 							
Unit I :	Real prope AM- Inter Boun and i	erties. GM inequality, Cauch vals and neighbourho nded sets, statements	d order properties of IR, ab ny-Schwarz inequality, oods in IR, Hausdorff prop s of L.u.b. axiom and its imum and minimum, Arc orem of rationals.	perty. consequences,	supre		15
Unit II:	Sequences In IRDefinition of a sequence in IR and examples, Convergence of sequences, every convergent sequence is bounded. Limit of a convergent sequence and uniqueness of limit, divergent sequence.Convergence of standard sequences.Algebra of convergent sequences, sandwich theorem, monotone sequences, monotone convergence theorem and consequences.Definition of subsequence, subsequence of a convergent sequence is convergent and convergent sequence is Cauchy sequences, every convergent sequence is Cauchy sequence and converse.						15
Books an Sr. No.	a	rences: Title	Author/s	Publisher		Edition	Year
1		ods of Real Analysis	R. R. Goldberg	Oxford and IBH		241101	1964

1.	Methods of Real Analysis	R. R. Goldberg	Oxford and IBH	1964
2.	Mathematical Analysis	K.G. Binmore	Cambridge University Press	1982
3.	Introduction to Real Analysis	R. G. Bartle and D. R. Sherbert	John Wiley & Sons	1994
4.	A course in Calculus and Real Analysis	Sudhir Ghorpade and Balmohan Limaye	Springer International Ltd.	2000

23BUMT1T4

Course Outcomes: Upon completion of this course, students will learn about

- Divisibility of integers.
- Properties of equivalence relations and partitions.

Prerequisites:

Set Theory: Set, subset, union and intersection of two sets, empty set, universal set, complement of a set, De Morgan's laws, Cartesian product of two sets, Relations, Permutations and combinations.

Complex numbers: Addition and multiplication of complex numbers, modulus, amplitude and conjugate of a complex number.

Integers & Divisibility.

Statements of well-ordering property of non-negative integers, Principle of finite induction (first and second) as a consequence of well-ordering property, Binomial theorem for non-negative exponents, Pascal Triangle. Divisibility in integers, division algorithm, greatest common divisor (g.c.d.) and least common multiple (l.c.m.) of two integers, basic properties of g.c.d. such as existence and uniqueness of g.c.d. of integers a and b and that the g.c.d. can be expressed as ma + nb where m, n are in Z, Euclidean algorithm, Primes, Euclid's lemma, Fundamental theorem of arithmetic, the set of primes is infinite. Congruence, definition and elementary properties, Euler's function, Statements of Euler's theorem, Fermat's theorem and Wilson theorem, Applications.

Functions and Equivalence relations.

Unit II :Definition of a function, domain, codomain and range of a function, composite
functions, examples, Direct image f [A] and inverse image f⁻¹[A] of a function.
Injective, surjective, bijective functions, Composite of injective, surjective, bijective
functions, Invertible functions, Bijective functions are invertible and conversely,
Examples of functions including constant, identity, projection, inclusion, Binary
operation as a function, properties, examples. Equivalence relations, Equivalence
classes, properties such as two equivalences classes are either identical or disjoint.
Definition of partition, every partition gives an equivalence relation and vice versa,

Congruence an equivalence relation on Z, Residue classes, Partition of Z, Addition modulo n, Multiplication modulo n, examples, conjugate classes.

Books and	Books and References:							
Sr. No.	Title	Author/s	Publisher	Edition	Year			
1.	Elementary Number Theory	David M. Burton	McGraw Hill Education (India) Private Ltd	7 th				
2.	Discrete Mathematics	Norman L. Biggs	Clarendon Press, Oxford	Revised	1989			

15

3.	Introd numbe	uction to the theory of ers	I. Niven and S. Zuckerman	Wiley Eastern, Ne Delhi	ew 3 rd	1972
4. A Sur		vey of Modern Algebra	G. Birkoff and S. Maclane	Mac Millan, New	York 3 rd	1965
5.	Basic	Abstract Algebra	P. B. Bhattacharya S. K. Jain and S. R. Nagpaul	New Age Internati	onal	1994
Course 23BUM		Practical b	Course Title based on Paper 1 and	paper II	Credits 2	No. o practio
		Practical based on 1	Paper I			
Practi	cal 1	Algebraic and orde	r properties of real numbe	ers		4
Practi	cal 2	Inequalities and ab	solute value property			4
Practi	cal 3	Hausdorff property	y and LUB axiom property	y		4
Practi	cal 4	Archemedian prop	erty			4
Practical 5 Convergence and Sandwich Theore			divergence of sequence em.	es, bounded sequ	iences,	4
Practical 6 Cauchy sequences.			s, monotonic sequences	, non-monotonic		4
Dreatical 7			eoretical Questions bas	ed on full paper	I	4
		Practical based on	paper II			
Practi	cal 8	Division Algorith	m, Euclidean algorithm	1		4
Practi	cal 9	Primes and the l	Fundamental theorem of	of Arithmetic,		4
Practic	al 10	Functions, Biject functions.	tive and Invertible fund	ctions, Composi	tions of	4
Practic	al 11	Binary Operation Equivalence class	n, Equivalence Relation ses.	ns, Partition and	d	4
Practic	al 12	Polynomial (I)				4
Practic	al 13	Polynomial (II)				4
Practic	al 14	Miscellaneous Th	eoretical Questions bas	ed on full paper		4
Practic	al 15	All multiple choic	e questions based on pa	per I and paper	II	4
		Total				60

Semester II

Course (23BUMT (Majo / 23BUMT (Mino	F2T1 r) F2T3	Course Title Credits N CALCULUS II 2						
 Learning Outcomes: Students would gain enough knowledge of Definition of Limits of functions Definition of Continuity of functions and its applications 								
Limits and Continuity Graphs of functionsDefinitions of limit of a function, uniqueness of limit if it exists, Algebra of limits, limits of composite functions, Sandwich theorem, left hand limit, right hand limit, non- existence of limit Limit at infinity, infinite limit Continuous functions: Continuity of a real valued function at a point and on a set. Sequential continuity, Algebra of continuous functions, discontinuous functions, examples of removable and essential discontinuity.15Intermediate Value theorem and its applications, Bolzano-Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15								
Unit II :Differentiability of functionsUnit II :Differentiable and non-differentiable functions, differentiable functions15Image: Chain rule, Higher order derivatives, Leibniz rule, Derivative of inverse functions, Implicit differentiation(only examples)15								
Books and	referenc Title		Author/s	Publisher	Editi	Year		
Methods	of Real	Analysis	R. R. Goldberg	Oxford and IBH	on	1964		
Methods of Real AnalysisR. R. GoldbergOxford and IBH1964CalculusJames StewartBrooks/Cole Publishing1994								

jj	8		
Calculus	James Stewart	Brooks/Cole Publishing	1994
		company	
Calculus, Vol I	T.M.Apostol	WileyAndSons(Asia	
)Pvt.Ltd	
A course in Calculus and Real	Sudhir Ghorpade and	Springer International Ltd.	2000
Analysis	Balmohan Limaye		

Course Code 23BUMT2T2/		Course Title Combinatorics	Credits	No. of lectures			
23BUMT	2T4	Combinatorics	2	30			
Learning O	Outcomes	Students would gain enough knowledge about-					
 Counting 							
		combination					
deranger							
		iinary Counting					
		and infinite sets, countable and uncountable sets examples such as	N, Z, N \times N,	Q			
(0, 1), R.							
Unit I :		on and multiplication Principle, counting sets of pairs, two ways co	e	15			
		g numbers of second kind. Simple recursion formulae satisfied by	S(n, k) for $k =$	1,			
$2, \cdots, n-1, n.$							
	Pigeonhole principle simple form(only statement).						
	Advar	ced Counting					
	Permu	tation and combination of sets and multi-sets, circular permutation	ns, emphasis o	on			
	solving	g problems.					
	Binom	ial and Multinomial Theorem, Pascal identity, examples of sta	ndard identiti	es			
Unit II :	such a	s the following with emphasis on combinatorial proofs.					
		$ \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r} \qquad \bullet \sum_{i=0}^{k} \binom{k}{i}^{2} = \binom{2k}{k} $ $ \frac{i}{r} = \binom{n+1}{r+1} \qquad \bullet \sum_{i=0}^{n} \binom{n}{i} = 2^{n} $		15			
	Non-ne Princip	$(r+1)$ $\sum_{i=0}^{n} (i)^{-2}$ egative integer solutions of equation $x_1 + x_2 + \cdots + x_k = n$. bal of inclusion and exclusion, its applications, derangements, ederiving formula for Euler's function $\varphi(n)$.	explicit formu	la			

Books and References:							
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Discrete Mathematics	Norman Biggs	Oxford University				
2.	Introductory Combinatorics	Richard Brualdi	Press John Wiley and sons				
3.	Combinatorics-Theory and Applications	V. Krishnamurthy	Affiliated East West Press.				
4.	Discrete Mathematics and its Applications	-	Tata McGraw Hills				
5.	Discrete mathematics	-	Schaum's outline series				

Course Code Practical 23BUMT2P1	Course TitleCreditsPractical based on Paper I and Paper II2		No. of practicals			
	Practical based on BNBUSMT201					
Practical 1	Limit of a function and Sandwich theorem, Continuous and discontinuous function.					
Practical 2	Algebra of limits and continuous functions, Intermediate V theorem	alue	4			
Practical 3	Properties of differentiable functions, derivatives of inverse functions and implicit functions.					
Practical 4	Higher order derivatives, Leibnitz Rule.					
Practical 5	Mean value theorems and its applications, L'Hospital's Rule, Increasing and Decreasing functions.					
Practical 6	Extreme values, Taylor's Theorem and Curve Sketching.					
Practical 7	Miscellaneous Theoretical Questions based on full paper					
	Practical based on BNBUSMT202					
Practical 8	tical 8 Finite, Infinite, Countable and Uncountable sets. Counting principles, Two way counting.					
Practical 9	9 Stirling numbers of second kind, Pigeon hole principle.					
Practical 10	actical 10 Multinomial theorem, identities, permutation and combination of multi- set.					
Practical 11	Inclusion-Exclusion principle. Euler phi function.					
Practical 12	cal 12 Composition of permutations, signature of permutation, inverse of permutation					
Practical 13	Recurrence relation.					
Practical 14						
Practical 15	5 Multiple choice questions on entire syllabus					
		Total	60			

Evaluation Scheme

Internals

Class Test/Assignment	Active Participation& Leadership qualities	Total
20 Marks Class Test	10	40
10 Marks Assignment/Project	10	40

Internal Examination:Based on Unit 1 / Unit 2 of Paper I and Paper IIDuration: 1 HourTotal Marks: 20

	Answer the following	20
Q. 1	Based on Unit I of paper I	10
Q. 2	Based on Unit I of Paper II	10

Theory Examination: Suggested Format of Question paper

Duration: 1.30 Hours

All questions are compulsory

Q.1	Attempt ANY TWO of the following	(10)
(A)	Unit 1	
(B)	Unit 1	
(C)	Unit 1	
(D)	Unit 1	
Q.2	Attempt ANY TWO of the following	(10)
(A)	Unit 2	
(B)	Unit 2	
(C)	Unit 2	
(D)	Unit 2	
Q.3	Answers the following (Attempt ANY TWO)	(10)
(A)	Fill in the blanks	
	i) Unit 1	
	ii) Unit 1	
	iii) Unit 2	
	iv) Unit 2	
	v) Unit 2	
(B)	Multiple choice questions.	
	i) Unit 1	
	ii) Unit 1	
	iii) Unit 1	
	iv) Unit 2	
	v) Unit 2	
(C)	Match the following	
	i) Unit 1	
	ii) Unit 1	
	iii) Unit 2	

Total Marks : 30

	iv)	Unit 2	
	v)	Unit 2	
(D)	True	and False	
	i)	Unit 1	
	ii)	Unit 1	
	iii)	Unit 1	
	iv)	Unit 2	
	v)	Unit 2	

Marks Distribution and Passing Criterion for Each Semester Semester 1: Major

		Theory		
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passing
23BUCH 1T1	20	08	30	12
23BUCH 1T2	20	08	30	12
23BUCH 1P1	-	-	50	20

		Theory		
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passing
23BUCH 1T3	20	08	30	12
23BUCH 1T4	20	08	30	12
23BUCH 1P2	-	-	50	20

Semester 2: Major

		Theory		
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passing
23BUCH 2T1	20	08	30	12
23BUCH 2T2	20	08	30	12
23BUCH 2P1	-	-	50	20

Semester 2: Minor

		Theory		
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passing
23BUCH 2T3	20	08	30	12
23BUCH 2T4	20	08	30	12
23BUCH 2P2	-	-	50	20

~*~*~*~*~

Semester I (Mathematics Skill Development)

Course Co 23BU1 SE		Course Title Infinite series and Polynomials	Credits 2	No. of lectures 15
	of series	er completion of the course, the students will develop the skills regarding t s. Students will also learn the in-depth knowledge of polynomials and its a		ts of
Unit I:	1.	ite Series Infinite series in IR. Definition of convergence and divergence. Ba including geometric series. Elementary results such as if $\sum_{n=1}^{\infty} a_n$ then $a_n \to 0$ but converse is not true. Cauchy criterion. Algebra of series. Tests for convergence. Comparison Test, Limit Comparison Test, Root test, Abel Test (without proof), Dirichlet Test (without proof The decimal expansion of real numbers. Convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$ Divergence of Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.	converges f convergent Ratio Test, f). Examples.	15
Unit II	Polyn Defin polyn F[X](proof relatio Facto Comp Funda comp expre a rati conse	Alternating series, Leibnitz rule, Examples. Absolute convergence convergence implies convergence but not conversely. Conditional nomials. ition of polynomial, polynomials over F where $F = Q$, R, C comials, degree of polynomial, basic properties, Division (without proof) and g.c.d. of two polynomials and its basic proper b), Euclidean algorithm (without proof), applications, Roots of con between roots and coefficients, multiplicity of a root, Remain r theorem, A polynomial of degree n over F has at most n roots. blex roots of a polynomial in R[X] occur in conjugate pairs, amental Theorem of Algebra, A polynomial of degree n in R[X] lex roots counted with multiplicity. A non-constant polynomial in ssed as a product of linear and quadratic factors in C[X]. Necessary ional number to be a root of a polynomial with integer coeffic equences such as p is an irrational number where p is a prime number, sum of nth roots of unity.	convergence. C. Algebra of algorithm in erties (without a polynomial, nder theorem, Statement of has exactly n has exactly n n R[X] can be condition for cients, simple	15

Books an	d References: Semester I (Mat	hematics Skill development)		
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Methods of Real Analysis	R. R. Goldberg	Oxford and IBH		1964
2.	Calculus and Analytic Geometry	Thomas and Finney	Addison-Wesley		1998
3.	Introduction to Real Analysis	R. G. Bartle and D. R. Sherbert	John Wiley & Sons		1994
4.	Discrete Mathematics	Norman L. Biggs	Clarendon Press, Oxford	Revised	1989
5.	G. Birkoff and S. Maclane	A Survey of Modern Algebra	Mac Millan, New York	3 rd	1965
6.	P. B. Bhattacharya S. K. Jain and S. R. Nagpaul	Basic Abstract Algebra	New Age International		1994

Semester II

(Mathematics Skill Development)

Course Cod 23BU2SEC		Application	Course Title of Derivative and Per	mutation	Credits 2	No. of lectures 15
		-		elop the skills regarding th ons and recurrence relation		
Unit I:	Rolle's application examples L-Hospit Taylor's polynom Definition condition	ons and examples, i al rule (without theorem withLag ial and application on of critical point, stationary convex functions	ge's and Cauchy's Monotone increasing proof), examples range's form of rem as. bint, local maximu		ions, orms, aylor ssary	15
Unit II	Permutation permutation signature Recurrence linear recu sequence, homogene	on is a product of d of a permutation, ev ce Relations, defini urrence relation, obt etc. in counting eous recurrence rela	composition of per lisjoint cycles, every of een and odd permutation ition of homogeneou aining recurrence related problems, solving tions by using iterative	rmutations, results succepted is a product of trans, cardinality of S_n , A as, non-homogeneous, ations of Tower of Hand homogeneous as we we methods, solving a haraic method proving the solution of the s	anspositions n. linear, non oi, Fibonacc ell as non omogeneous	, 15 - 8
Books an	d Referen	ces: Semester II skill	development			
Sr. No.	Title					
			Author/s	Publisher	Edition	Year
1.	Methods	of Real Analysis	Author/s R. R. Goldberg	Publisher Oxford and IBH	Edition	Year 1964
1. 2.						
	Mathema	of Real Analysis	R. R. Goldberg	Oxford and IBH		1964
2.	Mathema Introduct	of Real Analysis	R. R. Goldberg K.G. Binmore R. G. Bartle and D. R.	Oxford and IBH Cambridge University Press	5 	1964 1982
2.	Mathema Introduct Elemen	of Real Analysis atical Analysis ion to Real Analysis	R. R. Goldberg K.G. Binmore R. G. Bartle and D. R. Sherbert	Oxford and IBH Cambridge University Press John Wiley & Sons McGraw Hill Education	S 7 th	1964 1982

Semester I and II Mathematics Generic

Course Code 23BUMT1T5		Course Title Mathematics Generic (Semester I) Applied Mathematics I	Credits 2	No. of lectures 30
Course outco mathematics.	me: Af	ter completion of the course, the students will develop the skills regarding	g the application	ns of basic
Unit I:	Number System, LCM and HCF, Decimal fractions, Simplifications, square roots and cube roots, Average, problems on ages, Surds and Indices			15
Unit II:	Logarithm, Permutation and combinations, Probability, profit and loss, Simple and Compound interest, speed and distance, time and work, Ratio and proportion, Area			15
Course Code 23BUMT2T5		Course Title Mathematics Generic (Semester II) Applied Mathematics II	Credits 2	No. of lectures 30
Course outco mathematics.	me: Af	ter completion of the course, the students will develop the skills regarding	g the application	ns of basic
Unit I:	Data interpretation, Tables, Column Graphs, Bar Graphs, Line Chart, Pie Chart			15
Unit II:	Set theory, Matrices, Relations and functions, Equations and Matrices			15
Books and ref	erences	:		
	• •	ach to verbal and Non Verbal reasoning by R. S. Agarwal tude for competitive examination by R. S. Agrawal		
